
The Recur Technical Paper
Defining the Permissioned-Pull Standard for Digital

Value

Author: M J — Recur Labs

Version 1.0 | October 2025

1

Preface

The Recur Whitepaper defined the conceptual foundation of
consented continuity; a model where digital value moves
continuously within cryptographic consent instead of reacting after
failure.

This paper translates that principle into architecture. It defines the
permissioned-pull standard as a technical primitive: a universal
mechanism for consented flow that allows value to rebalance
before imbalance, safely and without intermediaries.

While the whitepaper described the “why,” this document specifies
the “how.” It outlines the authorization model, data schemas,
revocation logic, and implementation parameters required to
embed continuity at the protocol level.

The goal is not to introduce a new network, but to complete the
existing ones; providing the missing layer of continuity beneath
every digital dollar.

This paper serves as the canonical technical reference for the
Recur permissioned-pull standard. It accompanies the reference
implementation at github.com/recurmj/recur-standard.

2

Permanent record: IPFS CID
bafkreihq2fkzdiqekyznerv73xenjpmsik2cb6fhczsoxlieyifqadnwbe
— Recur Labs (October 2025).

Abstract

Finance still moves like a reflex: value reacts only after stress.
Every stablecoin, every transfer, every liquidation cascade follows
the same logic; push after imbalance.

The Recur architecture defines a missing motion: consented
continuity. It introduces a permissioned-pull layer that allows digital
money to move safely, predictably, and continuously within
cryptographic consent.

This paper formalizes how continuity becomes computable: the
technical design that lets liquidity rebalance before failure rather
than after it. It describes the data structures, authorization logic,
and verification flows required to embed consent, revocation, and
timing directly into value transfer itself.

The architecture is defined across a sequence of interoperable
standards: RIP-001 (Permissioned Pull Objects), RIP-002 (Consent
Registry), RIP-003 (Cross-Network Flow Intent), RIP-004 (Non-
Custodial Rebalancing), and their extensions through RIP-008
(Adaptive Routing and Settlement Mesh). Together, these define the
flow layer for digital value.

3

1. Introduction

Modern financial rails are instantaneous but discontinuous. A push-
based transaction is an isolated event: a sender signs, value
moves, state changes, and the system waits for the next trigger.
Between these moments, capital is static. Risk accumulates
silently until imbalance forces reaction.

This architecture makes stability reactive by design. Each loan,
margin position, or treasury balance remains vulnerable until
someone does something. When volatility accelerates, these
delayed actions compound into the familiar rhythm of crisis; over-
leverage, liquidation, contagion.

The opposite of reaction is not inaction; it is continuity: motion that
maintains equilibrium instead of restoring it. Recur defines the
minimal primitives required to express that continuity in code.

Its central idea is simple:

A payment system should move value automatically within
explicit consent, rather than manually after loss of balance.

4

To achieve this, Recur introduces three new components to the
digital-value stack:

1. Permissioned Pull Objects (PPOs): signed, revocable grants
that specify who may draw value, under what limits, and for
how long.

2. Flow Channels: lightweight contracts that execute PPOs
continuously or conditionally based on predefined triggers.

3. Consent Registry: an on-chain index that tracks, verifies, and
enforces revocation across applications and networks.

Together, these elements form a flow layer: a universal mechanism
for continuous, consent-driven liquidity movement across
stablecoin networks and settlement systems.

Higher layers, defined in RIP-003 and RIP-004, extend this model
across networks, allowing liquidity to stabilize itself across domains
without custodial bridges.

The remainder of this paper details the engineering model, security
assumptions, and economic implications of that architecture.

5

2. Design Principles

The Recur architecture rests on five foundational principles:

2.1 Continuity

Liquidity should not wait for imbalance. A financial system built on
push events is always catching up to its own failures. Recur treats
motion as a continuous state machine: capital can flow between
authorized states before imbalance propagates. This continuity
transforms stability from a reactive function into a native property
of the network.

2.2 Consent

Every movement of value must occur within clear, cryptographic
consent. Unlike custodial automation, permissioned pull does not
transfer control; it delegates it temporarily, within explicit scope. A
user signs an allowance not to a party, but to a structure. One that
can be revoked, expired, or bounded at any time. Consent defines
safety; revocation defines freedom.

2.3 Safety

Continuity cannot come at the cost of exposure. Recur embeds
multi-layered safeguards:

6

• Each pull request must validate against both token-level
allowance and permission object constraints.

• Expiry timestamps, balance limits, and cryptographic nonces
prevent replay or drift.

• Revocation is absolute and global: one action cancels all
active flows tied to a keypair.

2.4 Composability

Recur is not a chain; it is a pattern. It must operate across existing
stablecoin systems, wallet standards, and Layer-2 architectures. Its
design minimizes assumptions about where the value resides.
Recur is designed so that a permissioned pull can behave
identically across EVM networks (Ethereum, Base, etc.), and can in
future be generalized to other execution environments. The logic
remains invariant.

2.5 Transparency

Continuity must remain observable. The standard includes an on-
chain registry model for visibility into active permissions and
revocations. This registry (described in RIP-002) is intended to give
wallets, auditors, and integrators a shared source of truth. This
ensures regulators, auditors, and users alike can monitor liquidity
movement without intermediaries or opaque batching.

7

These principles define not only the system’s technical posture, but
its philosophical stance: stability by consent, automation by safety,
trust by verification.

3. System Architecture

At its core, Recur consists of three modular layers:

1. Authorization Layer: where consent is granted and
expressed.

2. Flow Layer: where movement is executed continuously under
constraints.

3. Verification Layer: where validation and revocation are
enforced.

3.1 Authorization Layer

The Authorization Layer encodes user intent as a Permissioned Pull
Object (PPO).

8

Each PPO is a signed data structure containing:

PPOs can be created off-chain and registered only upon first use,
minimizing gas cost and storage. They are revocable at any time by
submitting a single revokePull(address grantee) transaction to the
Consent Registry via a registry contract (RIP-002).

3.2 Flow Layer

In early implementations, execution is initiated per-call by the
authorized grantee using the signed PPO. Future implementations

Field Description

grantor Address granting consent to pull

grantee Address authorized to initiate pulls

token ERC-20 asset address

receiver Destination address for funds pulled

maxAmount Maximum total amount authorized under this PPO

validAfter Earliest timestamp the PPO can be used

validBefore Latest timestamp the PPO can be used

nonce Unique salt to prevent replay

signature EIP-712-compliant signature from grantor

9

introduce Flow Channels (RIP-005): dedicated contracts that
continuously enforce timing, thresholds, or rebalancing logic under
the same consent envelope.

In practice, a Flow Channel (RIP-005) is a contract that
continuously executes a grantor’s Permissioned Pull Object under
rate limits, caps, and timing constraints. Channels can be paused,
rate-adjusted, or revoked by the grantor at any time, and each
attempted pull revalidates consent before executing.

Triggers may include:

• Scheduled intervals (e.g., streaming payroll).

• Balance deviation thresholds (e.g., automated rebalancing).

• Oracle-based conditions (e.g., margin collateralization).

The channel validates each execution against PPO parameters,
ensuring no transfer exceeds its authorized scope. If any constraint
fails — expired, revoked, or limit exceeded — the transaction halts
automatically.

This architecture allows for both continuous and conditional flows.
In continuous mode, a stream of micro-pulls maintains equilibrium
in near real time. In conditional mode, a single pull executes only
when a defined condition is met.

10

3.3 Verification Layer

The Verification Layer underpins both authorization and flow.

It performs three critical functions:

1. Signature Verification: validates EIP-712 signatures on PPOs
to ensure origin authenticity.

2. Registry Validation: checks active consent state against the
global Consent Registry.

3. Revocation Propagation: enforces real-time halting of flows
once a revocation event is detected.

This guarantees that even if an off-chain actor or application
continues to request pulls, revoked permissions will fail on-chain
verification instantly.

3.4 Interoperability Architecture

Recur is designed to operate as an open standard. Its logic can be
implemented via smart contracts, wallet SDKs, or embedded API
calls. Cross-network functionality relies on minimal messaging: a
signed PPO can conceptually be mirrored via proof relays to other
networks without duplicating value.

11

The system therefore behaves as a continuity protocol, not a
custody system; liquidity remains under user control at all times.

Cross-network continuity is enforced through signed Flow Intents
(RIP-003) and non-custodial executors (RIP-004), not through
pooled liquidity or wrapped assets.

4. Security and Revocation Model

Continuity without containment would be chaos. Recur’s
permissioned-pull logic is engineered so that every automated
motion remains bounded by consent and cryptography.

4.1 Non-Custodial Security

No Recur component ever holds funds. All balances stay within the
native token contract; Flow Channels simply execute token
transfers under the grantor’s pre-signed scope. This preserves full
self-custody. There is no private-key delegation, no pooled wallet,
and no external escrow.

4.2 Revocation Mechanics

Revocation is immediate and absolute. A user can cancel a single
PPO or all active permissions through one transaction.

12

Once a revocation event is written to the Consent Registry:

• All pending pulls referencing that PPO revert automatically.

• Flow Channels verify registry state at each execution, halting

any transfer tied to a revoked ID.

• Applications subscribing to the registry receive an event

emission to update local state instantly.

Revocation proofs are stored as short hashes to preserve efficiency
and privacy; only the affected key-pairs and contract addresses are
visible on-chain. All executors, including Flow Channels (RIP-005)
and Cross-Network Rebalancers (RIP-004), must consult this
registry before execution.

4.3 Limits and Failsafes

• Amount limits: Each PPO defines both per-flow and cumulative
ceilings.

• Temporal limits: Expiry timestamps bound authorization
duration.

• Nonce and replay protection: Prevents reuse of signed data.

• Circuit breaker: Global emergency pause callable only by the

grantor’s key to stop all flows in extreme conditions. 

These guardrails ensure that even under malicious or buggy
conditions, loss cannot exceed pre-approved scope.

13

4.4 Verification Path

At every execution step, verification follows the same deterministic
order:

verifySignature(PPO)

→ checkRegistry(PPO.id == active)

→ enforceLimits(amount, interval, expiry)

→ executeTransfer()

If any condition fails, the transaction reverts with zero partial
movement. Security therefore emerges from composition, not trust:
no single component can bypass the chain of checks.

4.5 Auditable Continuity

In production implementations, every authorization, pull, and
revocation MUST emit structured on-chain events so that wallets,
auditors, and integrators can reconstruct a provable history of
consent and motion, enabling transparent compliance and proof-
of-consent frameworks for institutional users.

14

5. Example Scenarios

To illustrate how Recur behaves in practice, the following scenarios
demonstrate its use across different financial contexts.

5.1 Stablecoin Auto-Rebalancing

A treasury holds USDC across multiple exchanges and custodial
wallets. Using Recur, it issues a PPO to an automated grantee
authorizing up to $5 million total per 24 hours. The Flow Channel
monitors balances and automatically shifts excess liquidity toward
deficit accounts when deviation >5%. If markets move violently,
rebalancing occurs within consent before liquidation pressure
accumulates. The treasury can revoke the PPO instantly, freezing
all flows.

5.2 Recurring Payments

A consumer authorizes a media platform to pull $12 each month.
Instead of storing card data or relying on third-party custody, the
platform holds a signed PPO. At renewal, the Flow Channel
executes a single pull under that scope. If the user cancels, the
next pull fails verification; no disputes, no chargebacks, no waiting
periods.

15

5.3 Protocol Insurance / Margin Top-Ups

A lending protocol receives consent to pull small increments of
collateral from users’ stablecoin wallets when health ratio < 1.2. As
markets fluctuate, the Flow Channel automatically tops up margin
positions pre-emptively, avoiding cascade liquidations. No custody,
no global pauses; only local equilibrium maintained through
consented flow.

5.4 Cross-Network Clearing

While Recur’s initial implementations operate within single EVM
networks, the same permissioned-pull logic can extend across
them.

In its cross-network form, Recur does not bridge or custody
assets. Instead, the liquidity owner signs a Flow Intent (RIP-003)
declaring: which domain is overfunded, which domain is
underfunded, which asset is eligible to move, which executor may
act, and the maximum amount and time window. The Cross-
Network Rebalancer (RIP-004) enforces that intent. It verifies the
signature, checks revocation and caps, and then triggers a
permissioned pull directly from the source domain into the
destination address, using adapters that respect the grantor’s
consent.

16

No wrapped asset is ever minted. No intermediate pool is ever
created. The executor never takes custody. All movement is still
governed by the grantor’s signed authorization.

5.5 Subscription Recovery and User Control

If a user forgets to cancel a service, they can still revoke its PPO
after renewal. Future pulls fail automatically: no customer-support
loops, no arbitration. This replaces trust in platforms with
programmable control in the user’s hands.

6. Implementation Architecture

Recur is designed to integrate gradually. No chain migration, no
token swap, no new network required. Its architecture can be
implemented through lightweight smart contracts, SDKs, and APIs
layered atop existing systems.

6.1 Functional Overview

1. Wallet Layer: 
Wallets SHOULD expose a simple interface for users to issue,
view, and revoke PPOs. 
Example methods:

17

authorizePull(address grantee, address token, uint256 limit, uint256 interval, uint256
expiry)

revokePull(address grantee)

Wallets render active PPOs as visual consent cards, similar to
OAuth scopes.

2. Application Layer: 
Merchants, protocols, or agents integrate an SDK that verifies
PPO state and triggers pull requests. Each pull must reference
a valid PPO ID and proof of signature.

3. Protocol Layer: 
Smart contracts implement the core permissioned-pull logic;
including the current pull module and the forthcoming Flow
Channel and Consent Registry components. These contracts
are designed to remain minimal, auditable, and upgradeable
through open governance proposals rather than centralized
control.

4. Verification Layer:  
Off-chain verifiers and block explorers read event logs and
maintain consent snapshots for faster queries and regulatory
audit trails.

18

6.2 Cross-Network Flow

The same PPO signature can operate across multiple EVM
networks via message proofs. A relayer submits proof (per RIP-003)
verifying that a PPO exists and remains active on its origin chain.
This enables verified multi-chain continuity: liquidity can rebalance
across ecosystems using proof-verified PPOs, without wrapping or
bridging.

6.3 Integration Stack

Below is the intended stack. v1 of this repo includes the Contracts
and early SDK pieces. Wallet surfaces, cross-chain relayers, and
explorer tooling are part of upcoming milestones.

The architecture remains modular: a single component can be
adopted independently without requiring the full stack.

Layer Component Responsibility

Wallet User Interface Consent creation and revocation

SDK Developer Tools PPO verification and trigger handling

Contracts Flow & Registry Execution logic and consent enforcement

Relayers Cross-Network Messaging Propagation of PPO state

Explorer Indexer Consent visibility and analytics

19

7. Governance and Standardization

7.1 Open Standard Formation

Recur Labs proposes the permissioned-pull model as an open-
standard specification, designed for compatibility with existing
Ethereum and EVM governance processes.

Future versions may formalize the following documents:

• RIP-001: Permissioned Pull Object Standard

• RIP-002: Consent Registry Interface

• RIP-003: Cross-Network Flow Intent Format

Each document remains open to external contributors, ensuring
that no single entity controls the evolution of the standard.

Additional extensions (e.g., Non-Custodial Rebalancing, Flow
Channels, Adaptive Routing) will follow as subsequent RIPs once
the base layer stabilizes.

7.2 Stewardship

Recur Labs serves as initial steward, maintaining reference
implementations and audits.

20

Once the specification stabilizes, control transitions to a
community-governed working group consisting of wallet providers,
stablecoin issuers, and developers.

7.3 Compliance and Transparency

Because all consent actions are public and cryptographically
bound, Recur offers an audit-friendly environment without
compromising self-custody. This architecture gives institutions
auditable, user-signed proof of debit authority. Over time, that can
evolve into compliance primitives (regulated pull, traceable consent
trails) without resorting to custodial control.

8. Economic Impact

8.1 Efficiency

Push-based finance wastes time and liquidity. Balances remain idle
between events, waiting for manual triggers. By enabling
continuous liquidity, Recur increases capital velocity and reduces
opportunity cost across the entire digital economy.

21

8.2 Stability

When liquidity can rebalance before imbalance, volatility dampens
naturally. Protocols no longer need emergency liquidity injections or
mass liquidations; flow restores equilibrium in real time. This
transforms stability from a discretionary function (centralized
policy) into a network property (distributed continuity).

8.3 User Autonomy

Recur eliminates custodial dependencies by turning trust into
structure. Users control the boundaries of automation, not
intermediaries. Each consent is explicit, revocable, and self-
auditing; automation without surrender.

8.4 Macro Implications

As more systems adopt flow-based architecture, the
macroeconomic rhythm changes:

• Capital efficiency rises.

• Volatility compresses.

• Cycles shorten and soften.

 

The result is not artificial control but structural freedom: markets
that adapt continuously instead of collapsing periodically.

22

9. Roadmap

Parallel initiatives include educational materials, testnet
deployments, and developer incentive programs under Recur Labs
stewardship.

Phase Milestone Target

Q4 2025

Publish Technical Paper + RIP-001 → RIP-004 definitions
(Magicians discussion live) Complete

Q4 2025

v0.1 Reference Implementation (Ethereum / EVM
compatible) — includes RecurPullSafeV2,
RecurConsentRegistry, FlowIntentRegistry,
CrossNetworkRebalancer, DomainDirectory, EVM
Adapters, FlowChannelHardened, PolicyEnforcer,
AdaptiveRouter, SettlementMesh, and UniversalClock

Live /
Evolving

Q1 2026
Begin community review + interoperability tests across
networks (Base, Arbitrum, etc.) Planned

Q2 2026
SDK release + integration with wallet partners and
stablecoin issuers Planned

Q4 2026
Governance transition to open consortium (multi-network
adoption) Planned

23

10. Conclusion

Recur transforms motion into structure. Where legacy finance
reacts after imbalance, Recur rebalances before it. Its
permissioned-pull architecture turns liquidity from static inventory
into living flow: continuous, safe, and consented.

This is not a new currency, chain, or token. It is the missing logic
beneath them all: a universal grammar of value that makes
equilibrium programmable.

By embedding consent directly into movement, Recur completes
what digital money began: a system where freedom and stability
are not opposites, but the same function expressed through flow.

— End of Technical Specification —

24

Appendix — Specification Preview (v0.1)

Defining the Permissioned-Pull Standard for Digital Value

1. Core Primitives

1.1 Permissioned-Pull Object (PPO)

A cryptographically signed object that defines the boundaries of
consent for a pull. It lives client-side and can be revoked or
updated at any time.

Data Schema (conceptual):

PermissionedPullObject {

 grantor: address, // account granting consent

 grantee: address, // account authorized to initiate pulls

 receiver: address, // destination of funds

 token: address, // ERC-20 / ERC-4626 / wrapped native

 maxAmount: uint256, // maximum total amount authorized

 validAfter: uint256, // earliest timestamp the PPO can be used

 validBefore: uint256, // latest timestamp the PPO can be used

 nonce: uint256, // unique salt for replay protection

 signature: bytes // EIP-712 signature from grantor

}

25

Purpose:
Defines what may flow, to whom, how often, and within what
bounds.

1.2 Consent Registry (CR)

A minimal, on-chain registry that records active Permissioned-Pull
Objects by hash, not by data. It allows verification of consent
without custody of funds or data.

Functions:

• verify(hash) → bool

• revoke(hash)

• status(grantor, receiver) → state

Purpose:
Makes consent verifiable, not trust-based; “don’t hope, verify flow.”

1.3 Flow Channel (FC)

A lightweight execution layer that performs the authorized pull
within the bounds defined by the PPO.

26

Functions:

• pull(channelId, amount)

• claimable(channelId) → uint256

Purpose:
Executes movement of funds pre-approved by consent, not post-
requested by push. Supports deterministic rebalancing between
agents or protocols.

2. Architectural Principles

Principle Description

Client-side Consent
Authorization always originates and resides on the
client, not the receiver.

Reversible by
Design

Consent can be revoked instantly without
counterparty approval.

Interoperable
PPOs are network-agnostic: any EVM-compatible
chain or L2 can verify them.

Non-Custodial
No custody or escrow is introduced; only pre-
approved movement within defined limits.

Composable
PPOs can wrap existing ERC-20 logic and integrate
with DeFi or payment rails.

27

3. Implementation Path (v1 Targets)

1. Reference Implementation (Solidity): basic PPO + Consent
Registry + Flow Channel logic.

2. SDK + JS Library: client tools for creating, signing, and
managing PPOs.

3. Integration Templates: open adapters for wallets, dApps, and
stablecoin issuers.

4. Audit & Standardization: independent review and open
discussion before formal standardization.

4. Scope Note

Recur does not issue, custody, or broker assets. It defines the
continuity layer: a timing and consent standard that any existing
wallet, network, or asset can adopt.

28

	Preface
	Abstract
	1. Introduction
	2. Design Principles
	3. System Architecture
	4. Security and Revocation Model
	5. Example Scenarios
	6. Implementation Architecture
	7. Governance and Standardization
	8. Economic Impact
	9. Roadmap
	10. Conclusion
	Appendix — Specification Preview (v0.1)
	1. Core Primitives
	2. Architectural Principles
	3. Implementation Path (v1 Targets)
	4. Scope Note

